Category Archives: Uncategorized

INPHARED re-annotated with PHROGs

The recent PHROGs database from Terzian et al is a great resource for phage annotation. Previously we re-formatted this database into HMMs that are suitable for use within Prokka (read about it HERE and download the HMMs for yourself HERE).

Ryan has added this resource to our INPHARED dataset to re-annotate the genomes of all cultured phages that we can identify in Genbank. The updated GenomesDB folder of INPHARED can be downloaded from here (warning it’s a big file tar file), with > 19,000 genomes now annotated in a consistent manner. We have found the PHROGs annotation really useful to find homologues by string searching based on annotations, due to the standardised annotation provided by the PHROGs team.

These annotations are fully automated, thus for those that have spent 100s of hours annotating one phage, these annotations are most likely not “better” annotations. But they are entirely consistent over all the phages we have re-annotated, which for the analysis we are interested in doing is of importance to us. Ryan has more specific details on how to update the database on his github page. The PHROGs team provide a brilliant interactive site to explore all the PHROGs they annotated here.

Removal of incomplete phage genomes

Thanks to Evelien who has identified several 100 incomplete phages in the database, these have been removed and added to the exclusion list. Full details of those excluded on github page, with the ability to add accessions of other phages that you might spot here, which will be excluded in versions going forward.


Recently PHROGs was released by Terzian et al ( ). Full details are provided on their webpages and publication. Briefly their curated dataset provides tens of thousands of PHROGs with a standardised annotation attributed to each PHROG. All of this is available through their searchable website and can also be downloaded.

For first pass phage genome annotation this seems like a great resources. We standardly use Prokka for annotation of phage genomes, that allows custom hmm databases to be used for annotation. Unfortunately the HMMs provided directly by the PHROGs team don`t sit neatly into Prokka and allow the annotation linked to the PHROG to appear in the final annotation, because of differences in formats.

However, as they provided all their data in an easily downloadable form. We have taken this and reformatted to produce HMMs with the annotations included so it plays nicely with HMMER3 as part of Prokka . We have produced a single file that can but put in /opt/prokka/db/hmm directory of Prokka. Thanks to Thomas Sicheritz-Pontén for helping with sorting out getting the correct annotation into the 38,000 HMMs …

A single file containing all HMMs that can be directly added to Prokka , can be downloaded here. Warning its 3 Gb when unzipped. Thanks to Terzian et al who did all the hard work on producing the original PHROGs and curated annotation and making it available , we have just reformatted it for our own use and anybody else that might want to use it with prokka..

To get it running within prokka. Locate the installation of prokka

$prokka –listdb

In my case this results in output of /usr/local/bioinf/prokka/db

and [08:43:23] * HMMs: all_VOG HAMAP

telling us there are already some HMMs databases called all_VOG & HAMAP

Within /usr/local/bioinf/prokka/db is the a directory called hmm

Thus, the full path is /usr/local/bioinf/prokka/db/hmm

The downloaded database needs to be copied into /usr/local/bioinf/prokka/db/hmm

Then run $prokka –setupdb

Running the command $prokka –listdb

[08:43:23] * HMMs: all_phrogs all_VOG HAMAP

all_phrogs will now be used by prokka. If you only want to use the PHROGs database, consider using the prokka flag of –hmms and specify /usr/local/bioinf/prokka/db/hmm/all_phrogs

Full details on adding databases are explained on the Prokka github page

Bias in phage genomes

What started off sometime in 2019 as search for a number, too put into an introduction of a paper ends up a few years later with hopefully a useful paper. That number was how many complete phage genomes are currently publicly available via public databases are currently available.  At the time, NCBI virus had not been released (, which contains some of this information. Myself and Nathan Brown wrote a quick script that used the esearch/efetch factilies to extract phage genomes. Then applied several filtering steps to extract “complete” phage genomes with lots of manual filtering. We started providing this data on the website for download. After requests from people of how to cite this list and some reminding from Branko Rihtman, we have finally got to a pre-print. Ryan Cook has tidied up the code a lot  and parsed lots of informtion that can be extracted from the genbank files. 

 In extracting this informaiton we found many things 

 There is big bias in the hosts that phage are isolated on – most phages are isolated on a small number of host bacteria 

Far more lytic phage genomes than temperate – with most temperate phage genomes coming  from an even smaller number of hosts 

The number of putative antibiotic resistance genes is different for lytic versus temperate phages and host 

Jumbo phages are not always rare – again dependenent on the host 

Even for hosts where large numbers of phage have been isolated, we are a long way from sampling the number predicted phage species t

All the data can be accessed via github 

And the paper on

Adding More Reference Genomes to vConTACT2 Clusters

The virus clustering programme vConTACT2 is a fantastic tool for applying taxonomy to large sets of viral contigs. In short, it clusters unknown viruses with those in the RefSeq database based on shared protein clusters.

To provide even more context to viral clusters though, you may wish to include more reference genomes than those in RefSeq.

To supplement the RefSeq genomes, I took all of the phage genomes on MillardLab, and removed the RefSeq genomes (to avoid duplication). The remaining genomes were processed through at 95% minimum ID to remove highly similar sequences. This led to a custom subset of 7,527 genomes.

Genes were called on the 7,527 genomes using Prodigal. From this, .faa and .csv mapping files were produced so the reference genomes could be used to supplement vConTACT2 clustering.

Click HERE for the mapping (.csv) file.
Click HERE for the sequence (.faa) file.

Furthermore, a list of these genomes can be obtained from the mapping file using the following command (potentially useful when visualising the resultant network):

awk -F ',' '{print $2}' database.csv | sort | uniq

Happy clustering!

Updating the DIAMOND database file for ViromeQC

The new virome quality control software, ViromeQC, determines viral enrichment of sequenced viromes. In short, fastQ reads are aligned to ribosomal sequences using Bowtie and bacterial signature sequences using DIAMOND. These markers of bacterial contamination are used to estimate viral enrichment.

The pipeline was built using DIAMOND v.0.9.9. At the time of writing, the latest version of DIAMOND is v.0.9.29. Somewhere between these two versions, the format of DIAMOND databases changed. Therefore, if you have the latest version of DIAMOND, the pipeline will not run properly and you may see this error:

Error: Database was built with an older version of Diamond and is incompatible.

The issue is with the database:


To overcome this, I installed DIAMOND v.0.9.9, extracted the sequences from the database, and produced a new database using DIAMOND v.0.9.29 as follows:

/v.0.9.9/diamond getseq -d amphora_bacteria.dmnd | /v.0.9.29/diamond makedb -d new_db.dmnd

The new version of the database can be downloaded here:

Replace the old database with the new one and viromeQC should run beautifully.

All v all comparison of coliphages

Having recently sequenced several coliphages, we have wanted to compare them to all other coliphages. To do this, we have downloaded all complete (or near complete) bacteriophages genomes [see here]. We then filtered these genomes based on their GenBank description to pull out all phages that have Escherichia, E.coli or coliphage in their description.  Having done this we then used an all v all comparison of using MASH, to construct a matrix of similarity. Then visualised this using the heatmaply.

This can be seen below. An interactive webpage of the image  is available here 

Looking closely at the clusters it is clear to see that phage with genus form discrete clusters eg top right of the plot is T4virus (and other genera in the Tevenvirinae subfamily)


We have moved ….

The lab has now moved from Warwick Medical school to the Dept of Infection, Immunity, and Inflammation at the University of Leicester. To be more specific, I have moved with the rest of lab group still at Warwick.

After 17 years at Warwick and knowing who to speak to and where to find things, it has been an interesting experience starting at Leicester.  Not knowing how to get into or where exactly my office/lab is in the building, has provided a new experience. But also great to meet new colleagues, who have helped me find my way.



Welcome to Branko and Slawek

October has brought the start of a new term and the arrival of two new lab members (ok it November before posting)  Branko joins the lab to work as an ESPRC fellow working on AMR, he joins Paul who has further extended his ESPRC fellowship and will be with us for a few more months.

Slawek joins as a CENTA PhD student, who will be looking at the role of the marine VIROME in the maintaining a pool of AMR genes.

*Alex Wilcox has also joined the lab and like Branko and Paul he has gained an ESPRC fellowship

Bacteriophage genome assembly and annotation workshop

We will be running a bacteriophage genome assembly and annotation workshop at WMS on Monday 9th of January.  The course will be run on CLIMB  virtual machines, so please register for an account in advance.


Date: Monday 9th January 2017

Cost: £50

Registration and payment by Monday 5th December* – registration form is open – here

Spaces: 20


Attendees may provide up to four samples of bacteriophage DNA (by 5th Dec 2016) in advance of the workshop, which will be sequenced and the data available for analysis on the 9th of Jan. During the workshop attendees will learn how to quality control their data, assemble bacteriophage genomes, annotate and prepare their genome in a format for submission to EBI.

Registration is on a first come first served basis, so register early. Spaces are limited to 20 people

MRC CLIMB infrastructure will be used for the workshop.

Prior experience:

No prior experience of genome annotation is needed.


Analysis will be run on CLIMB. Users are encouraged to bring their own laptop – a limited number of laptops are available.

A free CLIMB account is also needed. Register here

DNA samples

DNA samples must be received by Monday 5th December for them to be sequenced in time for the course. It is not necessary to send phage samples to attend the course. The workshop is a genome annotation training workshop- sequencing of isolates is a bonus so that attendees can annotate their own genomes.

DNA samples must be sent in a 96 well plate. A minimum of 10 ul of DNA at 10 ng /ul DNA is required. Larger volumes are fine, but must be at concentration of 10 ng / ul.

DNA must be column purified prior to sending, Zymo DNA purification/columns are recommended. Concentration must be determined by use of fluorescent detection system (eg Qubit), not Nanodrop .

Phage do not have to be CsCl purified prior to DNA extraction. The method we use for extraction can be found here , then run through a DNA clean-up column

Please contact Andrew Millard on after registration, prior to sending any samples. DO NOT JUST SEND SAMPLES

  1. Contact prior to sending
  2. Label the plate so that your name can be read on the side of the plate.
  3. Complete the form that will be sent when you contact
  4. Sample names are to be alphanumeric only.